横向激励 Blumlein 型准分子激光器的 快放电电流测量

夏康民 陈必椿 刘妙宏 陈建文 傅淑芬 (中国科学院上海光机所)

提要:介绍了结合使用磁光法和 Rogowslki 线圈法测量快放电脉冲电流,并对 KrF 准分子体系作了实际测量。

Measurement of fast discharged current for transversely excited Blumlein excimer lasers

Xia Kangmin, Chen Bichun, Liu Miaohong, Chen Jianwen, Fu Shufen

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: This paper reports the measurement of the fast discharge pulsed current, which combines magneto-optical method and Rogowski coil method, and presents the experimental results on KrF excimer laser system.

横向快放电 Blumlein 型准分子激光器的研究中,放电电流的测量一直是人们颇感兴趣的问题。

快放电电流的测量经常使用 Rogowski 线圈法⁽¹⁾,近年来,也有人利用磁光法测量了 N₂激光的电流波形⁽²⁾。但是,在横向快放电 Blumlein 型装置上,常常因为缺乏既满足测 量系统要求又正确反映主放电电流规律的测 量位置,致使 Rogowski 方法不能准确地测 量主放电电流;而利用磁光法则很难标定电 流波形的绝对幅值。

本文介绍结合使用磁光法和 Rogowski

线圈法测量横向快放电 Blumlein型装置 的电流变化规律(包括波形参数和绝对幅 值)。

二、测量方法与实验装置

1. 待测的激光装置

激光裝置的等效线路如图 1 所示。其中 $C_1 \approx 20$ 毫微法; $C_2 \approx 9$ 毫微法; I_1 是主放电 电流; I_2 是形成电流。对于通常的放电特性 研究而言,最重要的是要了解电流 I_1 的变化 规律。

激光器件中的其余参数可参阅文献[3, 4]。

收稿日期: 1981年10月29日。

. 529 .

图1 Blumlein 型装置等效线路图

2. 测量方法

在 Rogowski 线圈中,当满足 $i(R_L+R)$ 《 $L \frac{di}{dt}$ 时,主电流信号I为^[5]:

$$I = ni = \frac{n}{D}V$$

(1)

式中*i*是线圈中的感应电流; *R*、*V*分别是 信号电阻与信号电压; *n*是线圈匝数。

线圈法的基本要求是: ωL≫R_L+R; 线 圈中的磁场分布应均匀相同。

在磁光法中,根据 Farday 效应原理,光 电接收器接收的信号光强 J_T 为:

$$J_T = \operatorname{Const} J_0 \sin^2 \theta \sim J_0 \theta^2$$

$$=J_0(VlH_z)^2 \tag{2}$$

式中 J_0 为初始偏振光强; l 为旋转体长度; H_s 是磁场强度在光束方向上的分量;式中取 近似是因为旋转角 θ 一般较小,在本实验 中一般 $\theta \lesssim 5^{\circ}$;已知 CS₂的费尔德常数V 为 0.042'/厘米·奥斯特。假设在放电回路的近 场区,磁力线为平行分布,则可认为 H_s 与放 电电流 I 成线性关系,于是(2)式又为;

 $J_r \sim \text{Const}(J_0 l^2 I^2)$ (3) 具体的实验装置和测量 位置 分别 如 图 2、3 所示。

图中 Faraday 旋转体内充满 CS_2 , F_1 长 85 厘米, F_2 长 106 厘米, 内径均为 ϕ 20, 两 端封接平面腔片; 使用输出 20 毫 瓦 的 He-Ne 激光作光源; 光电倍增管(56AVP)的峰值 放大率 10⁸, 上升时间 2 毫微秒; 示波器 SS-

图 2 比较测量法实验装置 P₁(P'₁)、P₂(P'₂)一尼科耳棱镜; *φ*一干涉滤 光片(6330Å); *M*一光电倍增管(56A VP); F₁、F₂—Faraday 旋转体(CS₂ 管); R₁、R₂— Rogowski 线圈

图 3 比较测量法中各有关测量位置图 6200 的上升时间 1.7 毫微秒; R₁ 与 R₂ 是两 个专门设计的 Rogowski 线圈体; OK-19 高 压示波器的上升时间为 3.5 毫微秒。

利用磁光法确定放电电流的变化规律与 波形参数;利用 Rogowski 线圈间接定标,确 定放电电流的幅值参数。测量的步骤是:1. 使用 F_1 旋光体测量待研究体系的 I_1 电流的 相对幅值,并选择一个放电稳定的体系作为 参考体系(我们采用 He 体系),以它的 I_1 电 流值作为相对单位;2.使用 F_2 旋光体测量 同一体系的 I_2 电流相对幅值,根据(3)式求 出比值 I_1/I_2 ;3.利用 $R_1(或 R_2)$ 测量同一 体系的 I_2 绝对幅值,并根据 I_1/I_2 值,就可 确定所研究体系的 I_1 绝对幅值;4.在上述 步骤中,同时也确定了 I_1 、 I_2 电流的主要波 形参数与变化规律。

测量过程中,利用参考体系可以方便地 测量多个体系。使用 Rogowski 线圈,需要

. 530 .

多次更换参数,观察不同 n/R 值的电流信号 变化和估计杂散量的影响。

在实验过程中,必须克服旋光介质(CS₂) 的漂移特性——包括退偏振特性、旋光性漂 移、折射率"发散"特性等,以及强烈的电磁干 扰。实验的成败在很大程度上取决于能否抑 制这些干扰。本实验中曾采取的部分措施 有:提高器件的放电稳定性,增加调制信号的 幅值;对测量系统采用去耦方法加多重屏蔽。 实验最终获得的信噪比 ≳5。

三、KrF 体系的电流波形测量

KrF体系的气体成分——F₂:Kr:He= 0.3:8:91.7, 总气压2大气压。放电参数 ——预电离28~34千伏, 主放电39~45千 伏,延时 τ_s≈1 微秒。

根据前述测量步骤,以 He 体系作 为参 考体系(He:2 大气压, 预电离 36 千伏, 主 放电 39 千伏, $\tau_s \sim 1$ 微秒)。用 F_1 旋光体测 量电流 I_1 的波形如图 4 所示,以其电流峰值 作为相对单位。

在 KrF 体系中, F_1 旋光体测量的 I_1 波 形如图 5 所示,其中, J_T (KrF)/ J_T (He) = 0.8,根据(3)式, I_1 (KrF)/ I_1 (He) \approx 0.9。

图 6 和图 7 分别列出使用 F_2 旋光体 和 使用 R_1 线圈测量的 I_2 电流波形,它们的主 要数据是基本一致的。应该注意,磁光法测 量中 $J_T \propto I^2$ 的函数关系,以及由此带来的信

图 6 KrF 体系的 I2 电流波形(F2 测)

号特征。其中, R1 线圈中 n/R≈75。

KrF体系放电电流测量的主要结果列 于表1。

由磁光法引起主电流信号的时间误差大 致包括:接收器的测量误差、旋光体长度的调 制误差、Faraday 效应的平方转换误差,总 相对误差 $\Delta t_r \lesssim 10\%$ 。而幅值误差包括:用 F_1 、 F_2 旋光体测量 I_1 、 I_2 的误差,用 R_1 (或 R_2)测量 I_2 的幅值误差,幅值总相对误差

 $\Delta_r \approx [\sum \Delta_i^2]^{1/2} \approx 14\%$

. 531 .

表1 KrF体系的电流波形参数

农工 环门电加坡加多数								
体系	$\frac{J_T(\mathbf{X})}{J_T(\mathrm{He})} = \frac{I_1^2(\mathbf{X})}{I_1^2(\mathrm{He})}$	I ₁ (X)/I ₁ (He)	<i>I</i> 1 (千安)	I2 (千安)	I_{1}/I_{2}	dI_1/dt (×10 ¹² 安/秒)	$\frac{dI_2/dt}{(imes 10^{12} 安/秒)}$	
He	1 (5)	1 1	33.1	24.9	1.33	1.24	0.36	
KrF	0.8(4)	~0.9	29.8	21	1.42	1.16	0.34	
 参考文献 [1] R. C. Sze et al.; IEEE J. Quant. Electr., 1978, QE-14, No. 12, 944. [2] K. Noguchi et al.; Japan J. A. P., 1980, 19, No. 10, L585. (上接第 536 页) 								
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

70

50-00-0

-0

30- 00 00

40-8

(a) 功率密度: 2000 瓦/厘米²; 移动速度: 14.7 毫米/秒

图 7 45 号钢的各种涂层吸收特性的比较

▲一氧化锆; B一磷酸锰; C-炭黑; D-石墨; E-镍、硼、硅; F-加工面; G-抛光面; 带竖线的表示吸收率 R₀; □-表面锥氏硬度 Hv; 带斜线的表示激光热作用面积 S

时表面硬度也高。凡经加工或抛光的无涂料 的金属表面均无硬化效果。

作者感谢王瑞华、黄关龙等同志对量热 计制作工艺和校对给予指导和支持,西北工 业大学李恩普同志参加了部分工作。

参考文献

[1] Smithells C. J.; Metals Reference Book III,

London: Butterworths, 1967.

- [2] 荒田吉明等;《溶接学会志》,1971年,第40卷,第 12号,1249~1260.
- [3] 荒田吉明等;《溶接学会志》,1972年,第41卷,第 3号,291~301.
- [4] Jon. E. Miller et al.; Metal Progress, 1977, III, No. 5, 38~43.
- [5] 黄永楷等;《计量学报》, 1981, 2, No. 1, 18.

• 532 •

50

40

20

0 0 0

10-8

0

30-0-0

07

0.

C